One of the main strengths of SPARQL is that it allows federated queries: a single query can combine data from multiple, independent knowledge bases.
PlantMetWiki is designed to work together with existing Linked Open Data resources such as:
- Wikidata
- ChEBI
- PubMed
In this section, we show how to move beyond PlantMetWiki alone and place plant metabolic pathways in a broader biological knowledge graph.
SPARQL endpoint https://plantmetwiki.bioinformatics.nl/sparql
Graph used in all queries
FROM <http://plantmetwiki.bioinformatics.nl/>
What is a federated SPARQL query?
A federated query uses the SERVICE keyword to send part of the query to a remote SPARQL endpoint.
Conceptually: • PlantMetWiki provides pathway context • External endpoints provide chemical, biological, or literature metadata • SPARQL stitches them together
SERVICE <https://query.wikidata.org/sparql> {
...
}
Each SERVICE block is evaluated remotely, and the results are merged with the local query.
Why federate from PlantMetWiki?
PlantMetWiki focuses on:
• pathways
• species
• biosynthesis
• gene clusters
It deliberately does not duplicate:
• chemical ontologies
• literature databases
• encyclopedic metadata
Federation lets you:
• enrich pathways with chemical identifiers
• connect metabolites to publications
• reuse authoritative external resources
⸻
Example 1 — Sending metabolites to Wikidata
Many PlantMetWiki pathways contain metabolites with identifiers that are also known to Wikidata.
Using a federated query, we can:
1. extract metabolite identifiers from PlantMetWiki
2. send them to Wikidata
3. retrieve additional metadata
Example (from WikidataTest.rq):
PREFIX gpml: <http://vocabularies.wikipathways.org/gpml#>
SELECT ?metabolite ?wikidataItem
FROM <http://plantmetwiki.bioinformatics.nl/>
WHERE {
?pathway gpml:hasDataNode ?metabolite .
SERVICE <https://query.wikidata.org/sparql> {
?wikidataItem ?p ?metabolite .
}
}
LIMIT 100
This demonstrates the mechanism of federation, even before refining identifiers.
Example 2 — Linking metabolites via InChIKeys
Chemical identifiers such as InChIKeys provide a robust bridge between databases.
PlantMetWiki → InChIKey → Wikidata → ChEBI
Example (from WikidataInChiKeys.rq):
SELECT ?metabolite ?inchiKey ?wikidataItem
FROM <http://plantmetwiki.bioinformatics.nl/>
WHERE {
?metabolite ?p ?inchiKey .
FILTER(CONTAINS(STR(?p), "InChIKey"))
SERVICE <https://query.wikidata.org/sparql> {
?wikidataItem wdt:P235 ?inchiKey .
}
}
LIMIT 100
This pattern allows you to:
• unify chemical identities across resources
• avoid ambiguous names
• build reliable cross-database links
⸻
Example 3 — Federating to ChEBI
ChEBI is the authoritative ontology for chemical entities of biological interest.
Using InChIKeys or ChEBI IDs, you can retrieve:
• chemical classifications
• roles (e.g. alkaloid, glycoside)
• ontology relationships
Example (from FederatedMetabolitesChEBI.rq):
SELECT ?metabolite ?chebi
FROM <http://plantmetwiki.bioinformatics.nl/>
WHERE {
?metabolite ?p ?chebi .
FILTER(CONTAINS(STR(?chebi), "CHEBI"))
SERVICE <https://query.wikidata.org/sparql> {
?chebiItem wdt:P683 ?chebi .
}
}
LIMIT 100
This enables ontology-aware pathway analysis without duplicating ChEBI locally.
Example 4 — Linking pathways to publications (PubMed)
Many pathways and gene clusters are supported by literature evidence.
Using federated queries, you can:
• extract PubMed IDs
• query Wikidata for article metadata
• retrieve titles, journals, and authors
Example (from ListPubMedIDs.rq):
SELECT DISTINCT ?pmid
FROM <http://plantmetwiki.bioinformatics.nl/>
WHERE {
?pathway ?p ?pmid .
FILTER(CONTAINS(STR(?pmid), "pubmed"))
}
Extended with federation (from WikidataLookupByInChIKeys.rq):
SERVICE <https://query.wikidata.org/sparql> {
?article wdt:P698 ?pmid ;
rdfs:label ?title .
FILTER(LANG(?title) = "en")
}
This connects:
• pathway → metabolite → publication
• enabling traceable biological evidence
Example 5 — Bidirectional federation
Federation does not have to start from PlantMetWiki.
You can:
• query Wikidata first
• then match results against PlantMetWiki
Example (from SendInChiKeysToWikidata.rq):
SERVICE <https://query.wikidata.org/sparql> {
?item wdt:P235 ?inchiKey .
}
?metabolite ?p ?inchiKey .
This pattern is useful when:
• starting from literature or chemical knowledge
• and asking whether PlantMetWiki contains related pathways
⸻
Practical considerations
Performance
• Federated queries are slower than local queries
• Limit result sizes (LIMIT)
• Avoid unnecessary variables
Stability
• External endpoints may change
• Wikidata enforces rate limits
• Queries should be robust to partial results
Design philosophy
PlantMetWiki intentionally stays lightweight:
• no chemical ontology duplication
• no literature mirroring
• no monolithic data model
Federation keeps the ecosystem modular and sustainable.
⸻
What you can do with federated queries
By combining PlantMetWiki with external resources, you can:
• trace metabolites from genome → pathway → chemistry → literature
• enrich pathway analyses with ontology information
• integrate PlantMetWiki into larger knowledge graphs
• support FAIR, reusable, interoperable workflows
⸻
Summary
Federated SPARQL queries allow PlantMetWiki to function as:
• a hub for plant metabolic pathways
• a connector between genomics, chemistry, and literature
• a first-class citizen of the Linked Open Data ecosystem
This closes the loop from: genes → pathways → metabolites → publications → knowledge
| Tutorial section | Query file |
|---|---|
| Wikidata basics | WikidataTest.rq |
| InChIKey federation | WikidataInChiKeys.rq |
| ChEBI federation | FederatedMetabolitesChEBI.rq |
| PubMed links | ListPubMedIDs.rq |
| Reverse federation | SendInChiKeysToWikidata.rq |
| Advanced lookups | WikidataLookupByInChIKeys.rq |